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A large number of logistic maps are coupled together as a mathematical metaphor for complex
natural systems with hierarchical organization. The elementary maps are first collected into globally
coupled lattices. These lattices are then coupled together in a hierarchical way to form a system with
many degrees of freedom. We summarize the behavior of the individual blocks, and then explore the
dynamics of the hierarchy. We offer some ideas that guide our understanding of this type of
system. ©2002 American Institute of Physics.@DOI: 10.1063/1.1502929#
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Ensembles of low-order dynamical systems are often use
to model the interaction, competition, and synchroniza-
tion among dynamically coupled, but distinct, objects. In
this genre, coupled map lattices are one of the simples
and widely used objects. Despite their simplicity, coupled
maps show a wide range of behavior, both with global
coupling „in which each map is affected by the dynamics
of all other maps; a mean field interaction… and local cou-
pling „where each map interacts only with its nearest
neighbors…. This richness is one reason for their popular-
ity. Another reason is their computational simplicity;
temporal evolution amounts to a straightforward se-
quence of algebraic operations. In the current article, we
take a conceptual step beyond the idea of a simple en
semble of maps; we consider ensembles of ensembles
maps, a lattice of lattices, coupled in a hierarchical way.
The underlying idea is that our hierarchy is a mathemati-
cal metaphor for a complicated entity composed of an
organization with many levels and scales. In the study of
this vast dynamical system, we try to make sense of the
possible range of dynamical behavior of which that sys-
tem is capable.

I. INTRODUCTION

Many natural systems are composed of a large num
of interacting elements, some of which are strongly coup
to each other, while others are only weakly bound toget
Often, these elements are composed of smaller subu
which are, in turn, composed of still smaller sub-subun
and so on down to a basic, perhaps molecular, level. T
structure can take the form of a hierarchy of basic const
ents wherein a rich network of units acts as a single, al
complex, entity. Classic examples of this type of organi
tion include such things as living or social organisms,
climate, and pictures of turbulence as a hierarchy of inter
ing eddies.

In this work, we explore some of the dynamics of such
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hierarchy of interacting elements. To build our metaphor,
begin at the lowest ‘‘level’’ with a collection of map lattices
Each lattice is a globally coupled network of maps, and
independent of the other lattices. The lattices are th
coupled to maps on a level ‘‘above,’’ which are themselv
organized into further lattices or groups. These groups
coupled to maps on the next higher level, which again
collected into another group. The repetition of this constr
tion creates a hierarchy of many levels; every level cons
of a lattice of maps, each with connections to the maps
the same level, to the lattices on the level beneath and
map above. At the head of the hierarchy is a single presid
map. This leads us to contemplate a system with a very la
number of degrees of freedom; a typical system contains6

or more map elements. We use logistic maps as the fun
mental elements, and so this translates to as many dim
sions.

Although the mathematical constructions conside
here are motivated by the behavior of natural systems w
hierarchical structure, our considerations are not mean
provide an understanding of those entities. Our goal is m
of a mathematical game—we simply pose the question t
given such a complicated system, can we make some
tematic deductions concerning its dynamical capabilitie
Some more specific questions we address are: How doe
hierarchy beneath influence the dynamics of the presid
map? Can disorganized behavior at the lower levels be o
nized in the upper levels? Vice versa, can organized mo
on the lower levels be destroyed as we go from the bottom
the head of the tree? Is the self-similar structure of the h
archy imprinted on the dynamics? All these questions
motivated by the issues that one often faces when consi
ing turbulent fluids~with their cascade of motion through a
inertial range of length and time scales!, interpreting time
series of physical and biological phenomena~with the ever-
present sources of noise and error, which are really hi
dimensional deterministic systems!, and in thinking of the
thermodynamical principles governing vast ensembles of
© 2002 American Institute of Physics
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teracting elements~where one assumes notions of equipa
tion and equilibrium in order to construct statistical e
sembles!.

II. FORMULATION

A. The elementary unit

We construct the hierarchy from a basic element. T
element, or building ‘‘block’’ as we shall refer to it, is com
posed of a lattice of coupled maps that interact through t
mean field. In addition, the mean field of the lattice is a
channelled into another map, the ‘‘node,’’ which does n
influence the underlying lattice.

The equations for the block are

Node: Xn115~12r! f ~Xn!1rMn , ~1a!

Lattice: xn11
j 5~12e! f ~xn

j !1eMn , ~1b!

where

Mn5
1

N (
j 51

N

f ~xn
j ! ~2!

is the lattice’smean field. The coupling strengths are me
sured by the parameters,e andr, which range from zero to
unity, with the additional constraint 0<e1r<1; e measures
the strength of the coupling inside the lattice, whiler mea-
sures the strength of the coupling between the lattice and
node. We further take logistic maps, with

f ~x!512ax2 ~3!

and 0,a<2.1

Thus, the building block is composed of a coupled m
lattice of the kind explored by Kaneko and others2–4 ~we
refer to the latter article as paper I! that is fed into another
logistic map. An understanding of the dynamics of this s
tem is a necessary ingredient in the exploration of the
hierarchy, so we give a crude summary in the next secti

B. The hierarchy

The system of interest in this study is a lattice of (NL

21)/(N21) maps, structured on anL-level tree and hierar-
chically coupled. The hierarchy begins at the lowest lev
labeledl 5L, then progresses throughL stages or levels up
to the apex, a single map labeledl 51 ~the ‘‘head’’!. On
every levell , Nl 21 maps are collected inNl 22 groups ofN
maps each. Maps in each block are coupled together thro
their mean fields. The scheme is illustrated in Fig. 1.

The lattice evolution is expressed mathematically by
system,

l 51 xn11
[1;1;2]5~12r! f ~xn

[1;1;2] !1rMn
[2;1] , ~4a!

lÞ1,lÞL xn11
[ l ;m;g]5~12e2r! f ~xn

[ l ;m;g] !1eMn
[ l ;g]

1rMn
[ l 11;m1N(g21)] , ~4b!

l 5L xn11
[L;m;g]5~12e! f ~xn

[L;m;g] !1eMn
[L;g] , ~4c!

where
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[ l ;g]5

1

N (
j 51

N

f ~xn
[ l ; j ;g] ! ~5!

is now thegroup mean field. In the notation used above, th
state of an individual map is indicated byxn

[ l ;m;g] , and it
contributes to the mean field,Mn

[ l ;g] , of the group of which it
is a member. The subscriptn indicates time~or iteration
number, since time is an integer!. The first superscript,l ,
indicates the level and runs from 1 toL; the second super
script, m, labels individual maps on the same level, wi
1<m<N, and the third superscript,g, indicates the group to
which the map belongs on a given level, with 1<g<Nl 22.
For the head,l 51, there are no groups and we use the sy
bol ‘‘ 2 ’’ instead of the group number.

The parametere takes the same meaning as befo
namely the coupling strength among maps within each lat
or group. Now, however,r measures the coupling betwee
levels.

III. DYNAMICS OF THE BUILDING BLOCK

A. The lattice

The dynamics of an individual lattice is documented
earlier papers. We summarize the results of these article
Figs. 2–4. Very roughly, the behavior of the lattice falls in
one of three categories: synchronization, clustering, and
coherence. In the first category, the lattice evolves into
completely synchronized state in which every element
ecutes the same trajectory~an orbit of the logistic map!. In
the clustering state, the lattice divides itself into synch
nized families; within each family, the maps execute t
same orbit, but the different families follow different orbit
In the third state, each element follows an orbit that is alm
independent of the others, and the lattice has little corre
tion. Figures 2 and 3 show regime diagrams for the th
possible phases, and Fig. 4 provides examples that illus
them. In Figs. 2 and 3, the dashed line shows the ro
border between incoherence and clustered lattices, whic
relatively well defined. This border can be constructed us
the mean-field theory described later in Sec. IV, and d
cussed also in paper I. The second curve in these pictur
based on further results from paper I; to the right of th
curve we expect only synchronized lattices~the curve com-

FIG. 1. ~Color online! Schematic illustration of~a! the elementary units
~here consisting of a node connected to a lattice of 9 maps!, and ~b! the
hierarchy constructed from them~here assumingN5L55!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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721Chaos, Vol. 12, No. 3, 2002 Coupled maps
bines the stability boundary of the fully synchronized latti
with that of the most stable cluster state—an equally pa
tioned cluster of two families executing an asynchrono
period-2 orbit—whichever lies furthest to the right!. How-
ever, the boundary between synchrony and clustering is m
ambiguous and there is substantial overlap of the two pha

Because they follow orbits of the quadratic map, t
dynamics of a synchronized lattice is solely a function oa
and is dictated by the familiar bifurcation diagram of th
map. Fora,0.75, there is a stable fixed point; if 0.75,a
,a`'1.401 155 19, there are periodic solutions; and wh
a.a` , the orbit is chaotic except inside windows ofa con-
taining stable periodic orbits. Cluster states are more o
periodic or quasiperiodic than chaotic,3,4 and the dynamics o
an incoherent lattice is, by definition, high dimension
chaos. We bring out these features in Fig. 2, which shows

FIG. 2. ~Color! A regime diagram indicating roughly where a single m
lattice synchronizes, clusters or is incoherent. The plot shows the ave
leading Lyapunov exponent of the lattice, determined from ten computat
with lattices of 100 elements. Each lattice was iterated 11 000 times, an
first 1000 iterations were discarded. The dashed line shows the approx
border between clustering and incoherence, and is constructed usin
mean-field theory of Sec. IV. The border between clustering and synch
zation is far less well defined and there is significant overlap of the
regimes. Based on the considerations of paper I~and, in particular, Fig. 1 of
that article!, we expect that there are only synchronized lattices to the r
of the second curve.
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leading Lyapunov exponent of the lattice. The onset of in
herence is relatively clearly seen in this picture, but there
regimes in which clustered and synchronized lattices are
distinguished.

The transition between synchronization and clustering
better highlighted in Fig. 3, which shows the fluctuation lev
of the mean field~as given by the standard deviation of
long time series of the mean field, averaged over ten real
tions of the lattice!. Synchronized lattices have fluctuatio
levels dictated by that of a single map, and asa increases,
this level can become quite large. On the other hand,
fluctuation level is typically the smallest for incoherent la
tices because each map evolves largely independently an
the fluctuations decay likeN21. A significant fraction of the
clustered lattices also have a reduced fluctuation level. T
arises because there are typically a large number of clu
states with a wide array of different ‘‘partitions’’~that is, the
number of families and the way the maps are distribu
amongst them!. By chance alone, clusters that have a mo
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FIG. 3. ~Color! A second regime diagram for the behavior of a single m
lattice. The plot now shows the fluctuation level of the mean field~the
average standard deviation over an orbit of length 10 000, determined
ten computations with lattices of 100 elements; each lattice was iter
11 000 times, and the first 1000 iterations were discarded!. As in Fig. 2, the
two curves show the rough border between incoherent and clustered lat
and the rightmost limit of lattices that are not synchronized.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 4. ~Color online! Evolution of sample blocks withN510 anda51.8. The map index is on the abscissa and time runs on the ordinates. Three p
panels are shown. In each pair, the left-hand picture illustrates the evolution of the lattice~the key to the coloring is given in the color bar!. The right-hand
plot in each pair displays the evolution of the corresponding node. In the latter, two computations are shown: the dotted line hasr50.1, and the solid line
showsr50.5. Panels~a!–~b! are for e50.1 ~an incoherent lattice!, ~c!–~d! are for e50.2 ~a clustered lattice!, and ~e!–~f! are for e50.4 ~a synchronized
lattice!.
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uniform partition~an equal distribution of maps in the fam
lies! are encountered more often than clusters with very
equal partitions; these more common clusters have redu
mean field fluctuations because families typically evolve
of step with one another~that is, the mean field contribution
from each cluster tend to offset one another!. A departure
from this rule of thumb occurs in a strip of Fig. 3 located ju
to the left of the black curve. Here, most of the cluster
lattices have unequal partitions and their mean fields
dominated by the larger family, which renders this field mo
like that of a synchronized lattice. These lattices also
usually chaotic, rather than periodic like their more equa
partitioned relatives, and for this reason, the strip also
pears in Fig. 2. Thus, the borders suggested in Figs. 2 a
do not separate clustering and synchrony but more prop
the end of equally partitioned clusters.

B. The node

The dynamics of the node is determined by the com
tition between the intrinsic dynamics of the map and
mean-field forcing from the underlying lattice. The streng
of the forcing is measured by the coupling parameterr. For
smaller values ofr, coupling is weak and the node evolve
largely under its own dynamics; depending on the value
a, we then expect periodic or chaotic dynamics. For larger
on the other hand, the intrinsic dynamics of the node play
secondary role, and we expect that the node dynamics
flects that of the forcing. This effect is obvious in the sam
blocks shown in Fig. 4—the node’s dynamics is largely
dependent ofe ~and hence the state in which the underlyi
lattice falls! for r50.1, but not whenr50.5. For example,
in panels~c!–~d!, the node is chaotic forr50.1 but has the
same periodicity as the lattice forr50.5.

If the uncoupled nodal map is chaotic (a.a`), the tran-
sition from independent to slaved dynamics is traced by
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Lyapunov exponent of the node; Fig. 5 displays such ex
nents on the (a,r) plane. In panel~a!, e50.1, and~depend-
ing on the value ofa! the underlying lattice is either clus
tered or incoherent. The exponent is positive for smallr and
a.a` , implying independent evolution of the node. Asr
increases, the exponent typically decreases and beco
negative, whereafter we interpret that the node is slaved
the forcing. Fore50.1, this passage of the exponent is i
terrupted by sharp transitions through skewed windows
stable periodic orbits.

The second panel of the figure shows computations w
e50.6, for which the underlying lattice is fully synchronize
~and so the precise values ofe andN are irrelevant!. A simi-
lar picture of the node dynamics emerges, although the st
ture in panel~b! is more complicated. In this case, periodi
orbit windows are horizontal and the exponent occasion
becomes positive even inside these windows. This indica
that there are parameter regimes in which both the sync
nized lattice and an uncoupled node are periodic, but
coupled node is chaotic.

The curves also drawn in Fig. 5 are constructed as
lows: When the underlying lattice is not synchronized,
illustrated in Fig. 3, the mean field fluctuates at a low lev
Consequently, the main effect of the lattice is to provide
nearly constant forcing,M (a,e), and so

Xn11'~12r! f ~Xn!1rM5~12r!~12aXn
2!1rM . ~6!

A simple rescaling recasts this equation in the form of
quadratic map with a new parameter,

ã5a~12r!~12r1rM !. ~7!

In other words, the coupling of the node to the underlyi
lattice renormalizes~and in fact reduces! the effective map
parameter~the notion of renormalization was used in pape
and will recur later when we consider the hierarchy; see a
Ref. 5!. Moreover, becausea` is the value ofã for which the
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 5. ~Color! Lyapunov exponent of the node of blocks with varyinga andr, for ~a! e50.1 and~b! e50.6; N5100. The computational length is 600
iterations, of which the first 1000 are discarded in order to remove transients. The curve is obtained from~8!; for panel~b! the value of the mean field used
is a time average.
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Lyapunov exponent of the renormalized map first becom
positive, the node must become slaved to the underlying
tice whenã'a` , or

a`'a~12r!~12r1rM !, ~8!

which, givena, can be solved immediately forr. This curve
compares well with the numerical results~see Fig. 5!.

The edges of the skewed windows of periodic orbits
Fig. 5~a! can be traced in a similar way. Also, despite the f
that the underlying lattice is synchronized~and so the mean
field fluctuations are not small!, curve ~8! also provides an
estimate of the location of the transition in panel~b!; the
mean field,M , used in this case is a temporal average o
the synchronized orbit.

IV. HIERARCHY DYNAMICS

We begin a discussion of the dynamics of the hierarc
by describing two useful concepts that help to navigate
Downloaded 12 Sep 2002 to 128.114.50.40. Redistribution subject to AIP
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path through the rich phenomenology: frustration and me
field renormalization~in two forms!. Rather than embark on
a detailed and systematic discussion of the dynamical be
ior ~which would have limited success and utility given th
huge number of degrees of freedom involved!, we then pro-
pose a number of guiding principles to help organize how
may think of the hierarchy. For illustration, we chooseN
510 for the number of maps in each block; many of t
results are similar on using other values ofN, but we offer
some remarks later on how the map-number per block aff
the dynamics.

A. Frustration

In some ways, the dynamics of the hierarchy can
thought of as resulting from a persistent frustration. Ea
map evolves under the competition between its own dyna
ics, the synchronizing effect of the mean field of the e
ments within the same block, and the forcing field drivin
the element from the level below. In certain limits of th
parameters, one of these competing effects can dominate
in many others, the competition frustrates the hierarchy.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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724 Chaos, Vol. 12, No. 3, 2002 Balmforth, Provenzale, and Sassi
One solution of the equations is the fully synchroniz
hierarchy,xn

[ •;•;•]5Xn . For a single map lattice, the analo
of this solution plays an important role~see the previous
section!. But the synchronized hierarchy is of secondary
terest. This is because on any one level, the blocks ev
independently of one another. Hence, there is no way to s
chronize the driving signals entering the maps on the le
above, and so those maps can never synchronize. True
chronization can only be achieved if all the driving signals
each level are identical. This is assured if all the blocks
into the same orbit, which would require both stability and
favorable initial condition. However, it is straightforward
show that fully synchronized hierarchies are linearly sta
only if the synchronized orbit is not chaotic~a,a` , or in-
side windows of stable periodic orbits!. Moreover, with a
large number of levels in the hierarchy and maps within e
block, the probability that the hierarchy will find a period
synchronized state from an arbitrary initial condition is e
sentially zero~each map must fall into the same phase of
cycle!.6

Despite the lack of true synchronization, it is possible
achieve a weaker form of synchronization on a level by
creasing the global couplinge. The enhanced coupling ca
then counter the desynchronizing effect of the varying dr
ing signals, and the differences between the maps on
level are thereby relegated to small fluctuations. We chris
this kind of dynamics, ‘‘imperfect synchronization.’’ Not
that, because arbitrarily small desynchronizing perturbati
can lead to order unity fluctuations around chaotic synch
nized states,7 chaotic, imperfect synchronous orbits shou
typically undergo episodic desynchronizations.

For similar reasons, variations in driving signals al
prevent true clustering within the hierarchy; ‘‘imperfec
clustering arises instead. As for the coupled map latt
these latter states are often periodic. In fact, because c
tered states often have reduced mean-field fluctuations~Fig.
3!, the variations in driving signals can be relatively small.
turn, this means that imperfect clustering can be pronoun
as we will see in the examples later in this section.

B. Level renormalization

If the mean fields at one level have low-amplitude flu
tuations, we can extend the ideas of renormalization use
Sec. III to the lattice immediately above: We setMn

[ l 11;g]

'm l 11; the maps on levell then evolve according to

xn11
[ l ;m;g]'~12e2r!@12a~xn

[ l ;m;g] !2#

1
e

N (
j 51

N

@12a~xn
[ l ; j ;g] !2#1rm l 11. ~9!

On making the change of variable,yn
[ l ;m;g]5xn

[ l ;m;g] /@12r
1rm l 11#, we recast~9! in the form,

yn11
[ l ;m;g]'~12 ẽ !@12ã~yn

[ l ;m;g] !2#1
ẽ

N (
j 51

N

@12ã~yn
[ l ; j ;g] !2#,

~10!

with
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ã5a~12r!~12r1rm l 11!, ẽ5
e

12r
. ~11!

That is, each group at thel th-level behaves as a globall
coupled map lattice with renormalized map and coupling
rameters.

The parameterã decreases withr while ẽ increases.
This has the interesting consequence that the lowest leve
be incoherent but the level immediately above can be c
tered or synchronized, at least in a mean sense, when
point (ẽ,ã) falls below the regime of incoherent lattices. Th
renormalized level can no longer be considered incoheren
this eventuality, and so the nature of the dynamics of
levels yet higher is unclear.

C. Complete renormalization

It is also possible to make a complete renormalization
the entire hierarchy when the mean fields at every level h
low-level fluctuations. In this instance, the whole system
incoherent, and we fixMn

[ l ;g]'m l at each level. The result
after similar manipulations is a logistic map describing eve
element in the hierarchy,

zn11
[ l ;m;g]'12ǎl~zn

[ l ;m;g] !2, ~12!

with zn
[ l ;m;g]5xn

[ l ;m;g] /(12e2r1em l1rm l 11) and the re-
normalized map parameter,

ǎl5H a~12r!~12r1rm l 11! l 51

a~12r2e!~12r2e1rml111eml! l 52, . . . ,L21

a~12e!~12e1em l ! l 5L .
~13!

This formula for ǎl can also be obtained from a further r
duction of ~10!, and is complicated by the presence ofm l ,
which itself depends onǎl . We can proceed a little further b
noting that the mean field of the renormalized element
given by

Z~ ǎl !512
1

N
ǎl(

m
~zn

[ l ;m;g] !2, ~14!

and depends uponǎl alone. By expressingzn
[ l ;m;g] in terms of

xn
[ l ;m;g] , we may write the right-hand side of this expressi

in terms ofm l . On eliminating that mean field, we are final
lead to

ǎl@12r2eZ~ ǎl !#5a~12e2r!2~12r1rm l 11!, ~15!

l P@2,L21#, which is an implicit equation forǎl . At the
lowest level,ǎL@12eZ(ǎL)#5a(12e)2, while the presid-
ing map is governed by~7!.

To solve the implicit equation, we rearrange the expr
sion by dividing by the factor 12r2eZ(ǎl). Given an ini-
tial first guess forǎl , we computeZ(ǎl), recalculateǎl from
the implicit equation, and then iterate until the variation ofǎl

is less than about 1024. A sample solution obtained in thi
way for a seven-level hierarchy is shown in Fig. 6. Althoug
the iteration appears to converge up to this tolerance in
~and many other! calculations, there are hidden problem
For a generic value of the map parameter, it is known t
statistical averages such asZ(ǎl) are not continuous func
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. Renormalizing the hierarchy I. Panel~a! shows the variation of the effective map parameter,ǎl , with level, l , for a52, e50.1, r50.05 andN
510. In panels~b! and~c!, we show the corresponding mean fields,m l , and Lyapunov exponents~the circles joined by dotted lines!. These are compared with
data computed directly from a single block at each level of a full hierarchy with the same values ofa, e andr. In panel~b!, the hierarchy mean fields ar
shown by points connected by solid lines. In~c!, the dots show the ten Lyapunov exponents@obtained via Gram-Schmidt orthogonalization~Ref. 8!# for the
selected block; the continuous line connects their average values. The parameters values are the same of Fig. 8~left!.
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tions because of the windows of stable periodic orbits. Mo
over, even with regularization by numerical resolution,Z(ǎl)
still varies wildly with ǎl . Therefore, the implicit equation i
unlikely to have a unique solution. Of course, if the ren
malized map enters a window of a stable periodic orbit
cannot be considered incoherent, and so the presence of
windows signifies an inconsistency in the theory. In real
the renormalized map is in a state of continual agitation fr
the mean-field fluctuations. This noisiness may well both
move the stable periodic orbit windows and regularize
computation ofǎl . However, such considerations require
extension of the theory, which is beyond our current disc
sion. Instead we are content to iterate the equation forǎl to
the required tolerance and hope all is well. The compari
of calculations like that shown in Fig. 6 with results from
full hierarchy~see below! gives us some confidence that th
hope is not completely unfounded.

In the example of Fig. 6, the renormalized parame
decreases froml 5L to l 5L21, recovers slightly froml
5L21 to l 5L22, and then asymptotes to a common val
ǎl→A, given implicitly by

A5
a~12e2r!2

12~e1r!Z~A!
. ~16!

Only the mean field of the lowest level contributes f
l 5L, whereas the elements at any other level experie
mean fields from both their own level and the one imme
ately below. Consequently, the renormalization is leastl
5L and l 51, and, in general, is greatest atl 5L21.

Also shown in the figure are the corresponding me
fields, m l , and the Lyapunov exponents of the renormaliz
maps. These are compared with data computed directly f
a single block at each level of a full hierarchy with the sa
base parameters. As indicated by the figure, there is ag
ment between the mean fields, and also the Lyapunov e
nents, once we average theN (510) exponents of a single
block. This comparison gives support both to the mean-fi
theory outlined in this section, and also to the idea that
hierarchy is incoherent.
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Now, for complete renormalization of an incoherent h
erarchy, all the maps must be chaotic. Hence,ǎl.a` , or

a~12r2e!~12r2e1rm l 111em l !.a` , ~17!

for every l P@2,L21#. This condition is the generalizatio
of that used in paper I to locate where a single coupled m
lattice desynchronizes. Because the renormalization is t
cally largest atl 5L21, ǎL21 is the smallest renormalize
parameter, and the condition that the lattice is incoher
becomes

ǎL215
a~12e2r!2~12r1rmL!

@12r2eZ~ ǎL21!#
.a` . ~18!

The limiting condition@in which we replace the inequality b
an equality and setZ(ǎL21)5Z(a`)'0.3761# can be writ-
ten as an equation forr that is straightforward to solve in
terms of ǎL @given ǎL we can compute mL[(1
2e)Z(ǎL)/@12eZ(ǎL)# and a5ǎL@12eZ(ǎL)#/(12e)2

without solving any implicit equations#.
A simpler approximation follows if we only require tha

A.a` . This leads to the limiting condition,

a5
a`@12~e1r!Z~a`!#

~12e2r!2 , ~19!

which depends on the coupling parameters solely thro
their sum, and can be solved for that combination. We sh
the two surfaces in the (e,r,a) parameter space that describ
these conditions in Fig. 7.

D. Guidelines

We now provide some illustrations of the behavior of t
hierarchy. To quantify the dynamics, we use two measu
The first is the average squared difference of all the elem
in each blockg at the l th level, averaged overP51000
iterations,

D [ l ;g]5
1

P (
n51

P
1

N~N21! (j
(

k
~xn

[ l ; j ;g]2xn
[ l ;k;g] !2. ~20!
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This quantity measures the degree of coherence of e
coupled lattice in two ways. First, the value ofD [ l ;g] pro-
vides an estimate of the uniformity of an individual bloc
low values indicate a high degree of synchrony, and incoh
ent blocks have high values. Second, the spread of value
D [ l ;g] on a particular level gives a sense of the range
different kinds of blocks. Closely clustered blocks typica
occur with a wide variety, and so the spread of values
D [ l ;g] highlights imperfect clusters.

The other measurement is the leading Lyapunov ex
nent of each group which, because of the hierarchical st
ture, can be computed for each group in isolation of
others. This exponent indicates the degree of temporal c
plexity at a particular level; if positive, the level can be co
sidered to evolve independently of the level below. If neg
tive, the exponent reveals either periodic motion or a le
slaved to that below.

~1! (e,a) in the incoherent regime: The lowest level is
incoherent and, as a result, feeds a mean field forcing w

FIG. 7. Renormalizing the hierarchy II. Panel~a! shows the surface in the
(e,r,a) parameter space corresponding to the condition in~18!, above
which we expect the system to be fully incoherent. Panel~b! shows the
simpler condition in~19!; this condition, forr50 is shown earlier in Figs.
2–3. The continuous lines in panel~a! mark the intersections of this secon
cylinder with the planese50 andr50 for comparison with the first sur-
face. The crinkles in the surface in~a! result from the appearance of win
dows of stable periodic orbits in the renormalized map; as that map sh
be incoherent~and therefore chaotic!, there is an inconsistency in the theo
here that must be resolved by explicit consideration of mean-field fluc
tions.
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low-level fluctuations into the level above. Consequently,
upper levels approximately consist of globally coupled m
lattices with renormalized parameters. If the renormalizat
is sufficient to place (ẽ,ã) out of the incoherent regime, the
the upper levels show some degree of clustering and/or
chronization. Otherwise the entire hierarchy is incoheren

Examples are shown in Fig. 8 fora52 ande50.1, with
r50.05 and 0.2. Forr50.05, according to the theory o
Sec. IV B, the renormalized lattice parameters above
lowest level remain in the incoherent regime~ã'1.8 andẽ
'0.11 at levelL21!, and the upper levels are incoheren
This is also consistent with the conditions for incoheren
derived in Sec. IV C~see also Fig. 6!. For r50.2, on the
other hand, the renormalized parameters atl 5L21 lie in the
clustering regime~ã'1.3 andẽ50.125!, and the higher lev-
els begin to organize.

The lower panels of the figure show our quantitati
measures of the dynamics. For the incoherent lattice,
squared differencesD [ l ;g] fall off slightly on moving up the
hierarchy, but otherwise remain at a relatively high lev
reflecting the lattice disorder. The Lyapunov exponents a
illustrate the chaotic incoherence. In the case with larger v
tical coupling, the emergence of some order on the lat
above the lowest level is evident inD [ l ;g] . The Lyapunov
exponents show that, at thel 56 level the lattices are slave
to the lower-level dynamics forr50.2. However, this situa-
tion reverses at the levels above. It seems impossible to
tract any trend of the dynamics with level in this seco
case; there is certainly no self-similarity.

~2! (e,a) in the clustering regime: If r is small (,e),
imperfect clusters exist at the lowest levels. For largerr
(.e), the clustering quality degrades because of the incre
ingly desynchronizing effect of the forcing fields from th
level below. At higherr, imperfect cluster states can aga
occur if the forcing fields from the level below can b
grouped into similar signals. True clustering occurs if the
are only a small number of periodic clusters at the low
level. Then elements on the next level up can receive id
tical forcing mean fields, and cluster together as a res
True clustering can continue in this way some distance
the hierarchy, but because the number of possible clus
and their phases rapidly multiplies on escalating through
hierarchy, the chance of finding such true clusters quic
declines.

The dynamics is illustrated in Fig. 9 fora51.7 ande
50.2. In the case withr50.05, we see the degradation
the clustering quality over the lowest level as we esca
through levels; for r50.5, persistent clustering occur
through accidental coincidences of the forcing fields. As
dicated by the Lyapunov exponents, there are chaotic sig
entering the hierarchy at the lowest level for both hierarch
Therefore, despite the appearance of the top picture in
second case, both presiding maps are chaotic. The ape
r50.5 appears to be nearly periodic because that presi
map receives a chaotic driving signal that has been filtere
low amplitude by the intermediate levels.

The degradation of the cluster quality is also reflected
the decline of the squared differences,D [ l ;g] , with level, l
~roughly speaking, incoherent solutions have the high

ld
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FIG. 8. ~Color online! Hierarchies with 7 levels,N510 maps in each block,a52 ande50.1. The shadings show representative lattices from the lower le
~the color map is chosen to emphasize differences amongst the elements!; the top picture shows time series of the presiding map at the pinnacle o
hierarchy. The left-hand panels haver50.05, and those on the right haver50.2. The two pictures at the bottom of the collage show~a! the normalized
squared differences,D [ l ;g] , and~b! the leading Lyapunov exponents for lattices at each level,l . The points show the values of the two quantities for ea
group,g, and the lines indicate the average over all groups on the same level. In each of the panels, we show the two cases displayed in the rema
figure, dots are for the case on the left; circles are for that on the right.
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squared differences, clusters somewhat smaller, but neve
less appreciable differences, and nearly synchronized s
tions have negligible ones!. The Lyapunov exponents high
light how the base of the hierarchy at these parameter va
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contains a variety of both periodic and chaotic clusters.
the case with weak vertical coupling, positive exponents f
ther up the hierarchy indicate the independent evolution
those levels; the other case, with stronger vertical coupl
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FIG. 9. ~Color online! A similar picture to Fig. 8, but fora51.7 ande50.2. The left-hand panels haver50.05, and those on the right haver50.5.
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is, however, slaved to the base level and has ‘‘nois
periodicity—rough periodic motion with low-level noise
The spread in the values of bothD [ l ;g] and the Lyapunov
exponents reflects the presence of a large number of diffe
kinds of cluster states at most levels.

~3! (e,a) in the chaotic synchronization regime: For
smallr, the lowest levels are in a state of imperfect synch
nization; each element follows a similar path interrupted
episodic desynchronizations. As we raiser, the amount of
Downloaded 12 Sep 2002 to 128.114.50.40. Redistribution subject to AIP
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synchronization degrades somewhat and the episodic de
chronizations become more frequent.

~4! (e,a) in the periodic synchronization regime: At the
lowest level, the blocks are all synchronized on the perio
solution but, in general, have different phases. For finiter,
this produces the onset of clustering at the penultimate le
and thereafter creates clusters of increasing complexity as
escalate through the hierarchy~until there are more cluster
than elements in each block!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 10. ~Color online! A similar picture to Fig. 8. The left-hand panels havea51.2, e50.25, andr50.3, and those on the right havea51.9, e50.5, and
r50.1.
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These two final cases are illustrated in Fig. 10. The
ries on the left displays a hierarchy with a periodic, synch
nized lowest level; clusters are obvious at all levels and
top map is a period-2 orbit. The series on the right sho
imperfect synchronization. The emergence of periodic cl
ters in the first case is clearly revealed by the spread
non-negligible squared differences at the fifth and sixth l
els and the negative Lyapunov exponents. Surprisingly, th
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is some suggestion that the periodic hierarchy converges
self-similar state at the higher levels, despite the pronoun
clustering at the lowest levels.

Note that, because of the constraint 1.e1r, it is not
always possible to sample all the ranges of behavior as
fix ( e,a) and varyr ~for example!. Also, exceptional case
occur if there are equally partitioned, period-2, two-clus
states; such states have constant mean field and so the
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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fect on the level immediately above does not fall into t
standard pattern.

E. Discussion

Given our ‘‘rules of thumb’’ for understanding the dy
namics, we can now return to the questions posed in
Introduction: Disorganization at the lowest level can inde
be organized further up the hierarchy; this is the renorma
ing effect of a constant mean field. The converse is also t
the complexity arising when levels can cluster and cho
different phases of a periodic orbit destroy the ability of t
hierarchy to continue to cluster at the higher levels.
choose among the possibilities, we must be sensitively aw
of the values of the coupling strengths and the map par
eter; Secs. IV B and IV C offer criteria indicating whether
lattice begins to organize or whether the whole system
incoherent.

Because organization can occur as we transcend leve
the hierarchy, the temporal complexity need not incre
with the number of levels. Indeed, only two of our samp
hierarchies show leading Lyapunov exponents that bec
independent of level~Figs. 8, left, and 10, right!. These two
cases are examples of ‘‘extensive systems,’’ in which
degree of complexity~as measured, for example, by th
number of positive Lyapunov exponents in each gro!
scales with system size, and are therefore hierarchies
self-similar dynamics. Curiously, these examples have
rameter values from different extremes of the parame
ranges:r ande both small andr ande both~relatively! large,
respectively. The first case is what one might call ‘‘ful
developed incoherence,’’ and all the maps have a degre
independence; the characteristic measures scale with
number. In the second case, the maps within each block
strongly synchronized, and characteristic scaling occurs w
block number, not element number. Hence, only the blo
are independent, and scaling is much weaker.

Of the other sample hierarchies, one is purely periodic
all levels~Fig. 10, left! and another has positive exponents
only the base level~Fig. 9, right!. The lack of an increase in
temporal complexity on escalating through the second h
archy reflects how the higher levels do not evolve indep
dently. In the chaotic case, the upper levels are almost p
odic, and disturbed by a low-level noise that is really t
high-dimensional signature of the lowest chaotic level. Th
such lattices illustrate the vision in which unresolved, hig
dimensional dynamics can be modeled as noise. Even if
dynamics is not actually chaotic, but periodic at all leve
(a,a`), the hierarchy has a different form of complexi
due to the extreme multiplicity of distinct attractors. This
the generalization of the ‘‘attractor crowding’’ described
Weisenfeld and Hadley.9

We may also use our guidelines to predict how the m
number per latticeN influences the dynamics of the hiera
chy. Evidently, when maps in each group lack coherence
are closely synchronized there can be little change on v
ing N. However, in hierarchies where organization beg
on escalating through levels, by adding further maps to e
group we can multiply the varieties of different drivin
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signals entering a given level from below. Hence, true cl
tering becomes an even more remote possibility and
quality of imperfect clusters can degrade as we raiseN.
Nonetheless, the phenomenology we have described rem
the same, and we have verified this numerically by varyingN
in the computations.

Lastly, we stress again that the present results refer
lattice where the coupling is unidirectional, from lower
upper levels. The breaking of this asymmetry can drastic
change the behavior, leading to full synchronization and, p
sumably, to a still richer ensemble of dynamical regimes

V. CONCLUDING REMARKS

Loosely speaking, in biological research an understa
ing of the workings of living organisms is gradually built u
by taking molecular units and combining them into larg
units, then taking the new, integrated units and combin
them into even larger components, and so on to create a
complicated hierarchical structure. Jacob10 called the entity
formed via this integrative procedure, an ‘‘integron.’’ More
over, because of the self-similarity of the construction pro
dure, one can think of the integron as being assembled f
integrons of the level below it, and each integron takes p
in the construction of the integron of the level above.

The hierarchical integrating process is not bound to
ology but is a metaphor for the organization of many diffe
ent systems. The contexts range from sociology to phys
in which smaller entities are put together to build up a bigg
‘‘organism.’’ For example, in visions of developed turbu
lence in the physical sciences, eddies of all scales exist,
are fed by an energy cascade from the large to the sm
scale. It may be interesting to use a simple model like
one considered here to explore the reliability of conce
such as eddy viscosity and mean field descriptions, that
become ill-defined when the lower levels are not totally d
organized. Another example comes from the climate syst
that is composed of many interacting units, which are in tu
composed of smaller subunits, having, in this case, differ
time and space scales. In this framework, an interesting q
tion is whether we can approximate the dynamics of
head, or of some of the upper levels, by a coarse-grai
description complemented by a stochastic process param
izing the dynamics of the lower levels. Again, organizati
in the lower levels may destroy such an attempt.

Of course, any such application is plagued by the
quirement to specialize and complexify for the sake of re
ism; elements of the hierarchy must be designed to suit
problem and their attributes typically vary with the level
integration, breaking the self-similarity, and information
passed amongst levels in a far more intricate fashion tha
directed feed from one level to the one immediately abo
~to name but two of an infinitude of possible complication!.
Our objectives here have been far more idealistic; our g
was to build one of the simplest mathematical models o
perfect integron. Maps were our ‘‘subjects’’ and we studi
their collective behavior within the hierarchically couple
lattice. In this endeavor, we decided to accept some m
limitation in the model we used; though it is true that hie
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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archies are typical for biological systems and for many ot
natural systems, one should not forget that different level
natural hierarchies are characterized by different time sca
In many instances, this property is crucial. The model inv
tigated here lacks this property, and one should be awar
this limitation in applications and extensions to real biolo
cal and sociological systems. A second important limitat
comes from the fact that the coupling in the model is uni
rectional, and the upper levels in the hierarchy cannot f
back on the lower levels. Notwithstanding these limits,
hope that the mathematical game in which we have indul
will prove useful to those dealing with the complicated hie
archies encountered in physical and biological applicatio
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